Attraktionen får guldspeglar att bygga ihop sig själva
Nanospeglar av guld har blivit en praktisk plattform för att studera olika egenskaper inom fysiken. Plattformen nästan skapar sig själv och är lätt att styra med salt, temperatur eller ljus, menar forskarna. De hoppas att detta nya verktyg av guldspeglar kan skalas upp till att ses för blotta ögat.
Tänk dig att du behöver ett mångsidigt och lättkontrollerat system för att utforska material ända ner på nanonivå. Då skulle du nog bli glatt överraskad om systemet byggde ihop sig självt på ditt bord. Just detta hände forskare vid Chalmers tekniska högskola som nu presenterar sina resultat i ansedda Nature. Deras framsteg skapar nya forskningsmöjligheter och kan även komma till nytta i tillämpningar inom nanoteknik.
Studier på nanonivå ger ny information om egenskaper hos materialet
När man utforskar material ända ner på nanonivå går det att studera helt nya egenskaper och interaktioner. För att kunna göra detta behövs olika former av plattformar, så kallade resonatorer. De är som minimala resonanslådor där ljus studsar mellan väggarna, på samma sätt som ljud studsar i klanglådan på en gitarr.
Forskare vid institutionen för fysik på Chalmers har nu upptäckt hur en sedan tidigare känd resonator – där ljus reflekteras mellan minimala speglar av guld – kan skapas och kontrolleras på ett enklare sätt än vad som hittills varit känt.
– Att skapa en så perfekt och stabil plattform som vi nu har kunnat observera, är vanligtvis mycket komplicerat och kräver många timmar i laboratorium. Men här ser vi det ske av sig själv, enbart genom naturens grundlagar och utan att vi tillför yttre energi.
– Vår plattform skulle du praktiskt taget kunna göra i ditt eget kök eftersom den skapas i rumstemperatur, med hjälp av vanligt vatten och lite salt, säger forskningsledaren Timur Shegai, docent vid institutionen för fysik, som själv överraskades av upptäckten i labbet.
Ett självmonterande och växande system
Det som han och kollegorna observerade är att när två små guldspeglar möter varandra i en saltvattenlösning uppstår en attraktion som gör att de bildar ett par. De båda guldspeglarna – med en diameter på bara 5 000 nanometer – är positivt laddade då vattenlösningen täcker dem med dubbla lager joner.
Egentligen borde de stöta bort varandra, men eftersom de samtidigt påverkas av den så kallade Casimireffekten så balanseras de. De två speglarna lägger sig mittemot varandra utan att glida isär igen och ett hålrum uppstår mellan dem. Ett sådant optiskt mikrohålrum är en elektromagnetisk resonator vilket ger många möjligheter att utforska olika fysiska fenomen.
Plattformen växer med naturens krafter
När guldspeglarna väl sökt sig till varandra stannar de i den attraherade positionen. Forskarna observerade också att fler och fler guldspeglar söker sig till varandra och formar grupper, om de inte aktivt separeras. Det innebär att systemet, enbart med hjälp av naturens krafter, växer och därmed skapar fler möjligheter för forskarna.
Så skapas den självmonterande plattformen
När två minimala guldspeglar möter varandra i en saltvattenlösning uppstår en attraktion som gör att de bildar ett par. Eftersom lösningen täcker dem med dubbla lager joner (i rött och blått) är de positivt laddade och borde egentligen stöta bort varandra. Men utöver den elektrostatiska kraften påverkas speglarna också av den så kallade casimireffekten, som skapar en attraktion. Det gör att speglarna lägger sig mitt emot varandra – och ett hålrum uppstår mellan dem. Ett sådant mikrohålrum är en optisk resonator som ger många möjligheter att utforska fysiska fenomen – som mötet mellan ljus och materia.
– Det som är speciellt med denna plattform är att det uppstår olika färger i hålrummet mellan guldspeglarna. Här kombineras intressant, och till och med vacker fysik. Genom att manipulera plattformen kan man ändra färgerna. Dessutom är plattformen enkel att kontrollera och styra, säger Timur Shegai.
Styrningen sker genom att tillföra mer salt till vattenlösningen, ändra i dess temperatur eller genom att belysa plattformen med laserljus.
Kan studera spännande möten mellan ljus och materia
Genom att placera ett ultratunt tvådimensionellt material i hålrummet eller genom att ändra i färgerna, kan även så kallade polaritoner skapas. Dessa är en slags hybridpartiklar som gör det möjligt att studera det spännande mötet mellan ljus och materia.
– Plattformen kan nu adderas till verktygslådan med självmonterande system. Tack vare dess mångsidighet kan den användas för att studera både grundläggande och tillämpad fysik, säger Battulga Munkhbat, forskare vid institutionen för fysik och försteförfattare till artikeln.
Plattformen kan skulle kunna skalas upp till större guldspeglar
Enligt studien finns det inga hinder för att plattformen på sikt skulle kunna skalas upp med större guldspeglar som går att se med blotta ögat. Det skulle kunna öppna för än fler möjligheter.
– Om jag ska sia om framtida tillämpningar av plattformen, skulle den kunna användas för att studera polaritoner på ett enklare sätt än man kan idag. Ett annat område skulle kunna vara att dra nytta av de färger som skapas mellan guldspeglarna, till exempel i pixlar för att kontrollera den relativa färgintensiteten för rött, grönt och blått. Plattformen skulle också kunna användas i bioapplikationer, sensorer eller i styrningen av nanorobotar, säger Timur Shegai.
Video: Se hur guldspeglarna attraheras av varandra och skapar en mångsidig och lättkontrollerad nanoplattform. (14 sek)
Vetenskaplig artikel:
Tunable self-assembled Casimir microcavities and polaritons, (Battulga Munkhbat, Adriana Canales, Betül Küçüköz, Denis G. Baranov och Timur O. Shegai), Nature (8 september 2021)
Fotnot: Forskarna är verksamma vid institutionen för fysik på Chalmers, Center for Photonics and 2D Materials i Moskva, Ryssland och Institute of Physics and Technology, Dolgoprudny, Ryssland.
Kontakta:
Timur Shegai, docent, institutionen för fysik, Chalmers tekniska högskola, timurs@chalmers.se