Upptäckter i Antarktis is öppnar nytt fönster mot universum
Miljarder neutriner passerar varje kvadratcentimeter av jordytan på en sekund. Genom mätningar i Antarktis is har forskare nu funnit det första tecknet på neutriner med energier mer än en miljon gånger högre än hos exploderande supernovor. Upptäckten, som publiceras i tidskriften Science, innebär att ettnytt fönster öppnats mot universum.
Miljarder neutriner passerar varje kvadratcentimeter av jordytan på en sekund. Genom mätningar i Antarktis is har forskare nu funnit det första tecknet på neutriner med energier mer än en miljon gånger högre än hos dem från exploderande supernovor. Upptäckten, som publiceras i tidskriften Science, innebär att ett nytt fönster öppnats mot universum.
IceCube, ett observatorium begravt i inlandsisen vid Sydpolen, är ett exempel på människans obändiga nyfikenhet på världen omkring henne, och på hur man genom teknisk utveckling kan utnyttja de möjligheter naturen bjuder för att besvara fundamentala frågor om universum. Det är idag ungefär 20 år sedan idén att utnyttja inlandsisen för att detektera neutriner från kosmos omsattes i praktiken, och de första neutrinoreaktionerna observerades vid Sydpolen. Forskare vid Stockholms och Uppsala
universitet, var tillsammans med tre amerikanska grupper de som initierade projektet, som så småningom blev IceCube. Idag, 20 år senare, presenterar IceCube-kollaborationen ett genombrott i form av 28 observerade högenergetiska neutrinoreaktioner.
– Detta är det första tecknet på neutriner med mycket hög energi från bortom vårt solsystems gränser, med energier mer än en miljon gånger högre än hos dem som observerades 1987 när en supernova exploderade i vår granngalax, Stora magellanska molnet, säger Francis Halzen, professor vid University of Wisconsin och initiativtagare till IceCube.
Resultatet beskrivs i fredagens nummer av tidskriften Science. Neutriner är nära nog masslösa elementarpartiklar som nästan inte alls växelverkar med materia, och därför kan förmedla information om vad som händer i de mest våldsamma och mest avlägsna fenomenen i universum. Miljarder neutriner passerar en kvadratcentimeter av jordytan varje sekund, men de allra flesta kommer från solen, eller från reaktioner i jordens atmosfär.
Mycket mer sällsynta neutriner som kommer från andra delar av vår galax, eller ännu längre bort, skulle kunna ge oss insikt om förhållandena i de extrema astronomiska objekt som fungerar som acceleratorer för den kosmiska partikelstrålningen: supernovor, svarta hål, pulsarer, aktiva galaxkärnor och andra extragalaktiska fenomen.
USA står för den största delen av kostnaden för IceCube-observatoriet, som drivs från Wisconsin IceCube Particle Astrophysics Center (WIPAC) vid University of Wisconsin. Observatoriet är konstruerat med två specifika vetenskaplig mål: att mäta intensiteten i flödet av högenergineutriner och att identifiera deras källor.
IceCube detekterar ljus nere i isen som bildas då en neutrino reagerar med en atomkärna. Observatoriet består av en kubikkilometer is (cirka en miljard ton) som utrustats med 5 160 ljusdetektorer. Dessutom finns detektorer ovanpå isen. Analysen som nu publiceras i Science beskriver för första gången hur ett flöde av högenergineutriner detekterats, med hög statistisk signifikans (mer än fyra standardavvikelser), och i överensstämmelse med vad man skulle förvänta sig för kosmiska partikelacceleratorer.
Sverige har bidragit väsentligt till framgången, både med instrumentering och personal. Projektet har stötts av K&A Wallenbergs stiftelse, Polarforskningssekretariatet och Vetenskapsrådet.
– Det är fantastiskt att vi nu, efter 20 års arbete, lyckats öppna ett helt nytt fönster mot universum som ingen tidigare sett ut igenom, säger Per Olof Hulth från Stockholms universitet, som var den förste talespersonen för IceCube-projektet.
Den nuvarande talespersonen är Olga Botner vid Uppsala universitet. Hon förklarar:
– Vi har sett antydningar i analys av tidigare data från IceCube och sedan med hjälp av förbättrade analysmetoder och mera data kunnat ta detta betydelsefulla steg framåt för att detektera den svårfångade astrofysikaliska signalen. Vi arbetar hårt med att förbättra signifikansen i vår observation och på att förstå vad signalen betyder och varifrån den kommer.
De 28 högenergineutrinerna hittades i data som insamlats av IceCube från maj 2010 till maj 2012, och genomsökts efter neutrinoreaktioner med en energi större än 50 teraelektronvolt (TeV). De kan inte förklaras med kända partikelflöden, som neutriner eller laddade partiklar från jordens atmosfär.
Länk till IceCube http://icecube.wisc.edu
Artikel i Science: http://www.sciencemag.org/lookup/doi/10.1126/science.124285